Soft Matter / NATURALBUILD

Soft Matter / NATURALBUILD - Image 2 of 18Soft Matter / NATURALBUILD - Image 3 of 18Soft Matter / NATURALBUILD - Image 4 of 18Soft Matter / NATURALBUILD - Image 5 of 18Soft Matter / NATURALBUILD - More Images+ 13

Pudongxinqu, China
  • Client: Shanghai Harbour City Development (Group) Co.Ltd
  • Project Architect: Haibo He
  • Design Team: Hanhua Xu, Xini Chai
  • City: Pudongxinqu
  • Country: China
More SpecsLess Specs
Soft Matter / NATURALBUILD - Image 7 of 18
Pavilion and Landscape. Image © Hao Chen

Text description provided by the architects. The pavilion is built for 2017 Shanghai Urban Space Art Season as part of an outdoor extension of the Lin Gang exhibition.

Soft Matter / NATURALBUILD - Image 8 of 18
Model. Image Courtesy of NATURALBUILD
Soft Matter / NATURALBUILD - Image 9 of 18
Initial Concept Model. Image Courtesy of NATURALBUILD

Nowadays, natural geological constraints of the sites are often changed and manipulated by modern technology, and Lin Gang New City in an exemplary place. Standing on the largest hydraulic fill reclamation in history, one would find it difficult to comprehend whether it is liquid or solid, natural or artificial. Inspired by the super-scaled act of land filling, we became fascinated by the ambiguity between material states as well as the unpredictability and mysteriousness of this unprecedented event. This kind of “accidental nature” became the starting point of the pavilion’s design.

Soft Matter / NATURALBUILD - Image 5 of 18
Canopy. Image © Hao Chen

We took the basic architectural prototype – canopy and column. The canopy is created by polyurethane foam: a heat insulating material that is usually hidden within architecture. Upon spraying, the foam rapidly hardens and expands, which gives it a bubble-like texture. The ambiguity of the foam’s material state gives users multiple ways of scalar interpretations.

Soft Matter / NATURALBUILD - Image 13 of 18
Material Study. Image Courtesy of NATURALBUILD

We first attempted to define the curving form of the canopy through parametric physic form finding and optimization, however the outcome was overly monotonous. Therefore we turned to other options to resolve the structural deformation. Through a series of specific experiments on the materials’ performance, the architects and the structural engineer decided to pick nylon net to reinforce the polyurethane foam body. Consequentially, a new type of construction method is created: pre-stressing the nylon net by anchoring weight to different area of the surface and then spraying polyurethane onto both sides of the net.

Soft Matter / NATURALBUILD - Image 6 of 18
Standing under the Canopy. Image © Hao Chen

The building method of the canopy contributed to two major benefits. Firstly, as the shell structure has already been “pre-distorted” by self-weight, therefore in theory, gravity will not cause another deformation as long as the boundary conditions remain the same; moreover, the process of pre-stressing was able to lower the risk of the polyurethane foam cracking. As a result, a lightweight pre-stressed shell structure became the canopy.

Soft Matter / NATURALBUILD - Image 3 of 18
Playing in the Sun. Image Courtesy of NATURALBUILD

The following is the building process: before spraying the foam, we placed a numbers of inflated balls onto the nylon net and loaded each of them with different weight of sandbags. Through this process of elastic deformation, the pre-stressed property and the form of the canopy are generated. During the process of designing where to attach the sandbag weights, not only that we considered the structural integrity of the canopy, but also the users’ experience underneath the structure by articulating the sizes, quantities and positions of the inflated balls.

Soft Matter / NATURALBUILD - Image 4 of 18
Children on the Roof. Image Courtesy of NATURALBUILD

Meanwhile, we made structural analytical and optimization studies on the pavilion. Within an acceptable deflection range, the canopy is supported by 6 steel columns positioned on the edges of the structure with a maximum corner cantilever of 5m. Based on the theory of large deformation, we decided to use 50x50mm solid steel columns to support 80x6mm square hollow section beams that are directly connected to canopy structure.

Soft Matter / NATURALBUILD - Image 12 of 18
Spraying Polyurethane Foam onto the Nylon Net. Image Courtesy of NATURALBUILD

In order to ensure the steel frame’s tolerance against lateral forces, we introduced steel rebars for the nylon net to attach to. As a result, forces transferred from the rebars to the frame become axial forces that in turns reinforce the canopy’s stability. Instead of pursuing for a form, the canopy’s extreme span and thinness are generated by the dimensions and locations of the supporting steel columns.

Soft Matter / NATURALBUILD - Image 10 of 18
Model Study. Image Courtesy of NATURALBUILD

The combination of perceptions and precise calculations landed in a design that resembles “soft matter”. Its vague precision recreates a type of sensuous attendance that is lost in typical industrial constructions.

Soft Matter / NATURALBUILD - Image 2 of 18
Interaction with the Opening. Image Courtesy of NATURALBUILD

Project gallery

See allShow less

Project location

Address:Lin Gang New City, 88 Huanhu West 2nd Road, close to Haigang Avenue, Pudong, Shanghai, China

Click to open map
Location to be used only as a reference. It could indicate city/country but not exact address.
About this office
Cite: "Soft Matter / NATURALBUILD" 10 Dec 2018. ArchDaily. Accessed . <https://www.archdaily.com/907205/soft-matter-naturalbuild> ISSN 0719-8884

View from Entrance. Image © Hao Chen

柔物 / 直造建筑事务所

You've started following your first account!

Did you know?

You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.