Neri Oxman is an architect and founder of MATERIALECOLOGY with the MIT Media Lab. Her work focuses on computational strategies for form finding; she chooses to define and design processes that generate form. She has published numerous papers and has contributed to various texts. Her work has also been featured at the MOMA for the exhibit “Design and the Elastic Mind“, which she designed four systems of processes. In this lecture posted by PopTech, Oxman discusses what the processes of nature can teach designers and how computational strategies defined by materials and the environment can expand the possibilities of the generation of form through algorithms and analysis.
Follow us after the break for more.
Emergence can be defined by a spontaneous order, a self-organization, that appears in nature and natural processes. It can be studied on multiple scales; in the cells of plants and animals and in the traffic patterns of developed cities. Oxman points to processes in nature that are defined by the rules of biological functions and from which form are generated. Without a notion of the end result, the processes are based on their functionality, for example, how structural and efficient the stem of a plant is at supporting its weight and creating energy.
Oxman’s work is inspired by the quest for the origin of form and form finders of the 1970s that were led by material and environmental properties. Form, in this case, is an optimization of the function of a material in its environment – “what it wants to be”. Technology can and often is the guide that informs the exploration and eventually evolves from it. Oxman takes these notions many steps further with her work in “computationally enabled form finding”. The equation that she presents so simple that takes the variables of material properties and environmental constraints to generate form.
The inquisitiveness of Buckminster Fuller‘s designs for efficient structures was guided by the optimization of materials in form – such as a the geodesic dome. But his explorations of the Dymaxion automobile and house inpired ideas that pushed beyond what the materials wanted to be and into what the environment wanted to be, what society wanted to be – ideas that we are now reviving in our quest for sustainable architectural solutions. In the meantime, technology is taking nature many steps forward, rushing beyond the limits of what nature can do and defining a different existence that humans enjoy, setting us apart from the lifestyles of our ancestors.
And the tragedy that we have come upon is that our technological ambitions are destroying the earth and the natural processes that it relies upon. Somewhere in between the runaway advancements and the devastating effects they cause to our ecosystems is something Oxman calls “nature 2.0″. This is a considerable idea, involved with embracing the natural organizations of materials as well as their natural functions – so not just form, but also very explicitly function. She praises nature for being so efficient at multi-tasking: analysis, modelling and fabrication in one process.
In this model of “nature 2.0″ and technology, the designer is an experimenter of generating options for forms under a variety of circumstances. Technology offers the tools to analyze, map and build upon observations and designers can use these tools in a variety of ways, some of which Oxman touches upon in her lecture.